Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

Identifieur interne : 001128 ( Main/Exploration ); précédent : 001127; suivant : 001129

Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

Auteurs : Tao Li [Finlande, Danemark] ; James D. Blande [Finlande]

Source :

RBID : pubmed:28280959

Descripteurs français

English descriptors

Abstract

Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.

DOI: 10.1007/s10886-017-0826-z
PubMed: 28280959


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.</title>
<author>
<name sortKey="Li, Tao" sort="Li, Tao" uniqKey="Li T" first="Tao" last="Li">Tao Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI, Finland. tao.li@bio.ku.dk.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI</wicri:regionArea>
<wicri:noRegion>FI</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen E, DK, Denmark. tao.li@bio.ku.dk.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen E, DK</wicri:regionArea>
<wicri:noRegion>DK</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blande, James D" sort="Blande, James D" uniqKey="Blande J" first="James D" last="Blande">James D. Blande</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI</wicri:regionArea>
<wicri:noRegion>FI</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28280959</idno>
<idno type="pmid">28280959</idno>
<idno type="doi">10.1007/s10886-017-0826-z</idno>
<idno type="wicri:Area/Main/Corpus">001411</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001411</idno>
<idno type="wicri:Area/Main/Curation">001411</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001411</idno>
<idno type="wicri:Area/Main/Exploration">001411</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.</title>
<author>
<name sortKey="Li, Tao" sort="Li, Tao" uniqKey="Li T" first="Tao" last="Li">Tao Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI, Finland. tao.li@bio.ku.dk.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI</wicri:regionArea>
<wicri:noRegion>FI</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen E, DK, Denmark. tao.li@bio.ku.dk.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen E, DK</wicri:regionArea>
<wicri:noRegion>DK</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blande, James D" sort="Blande, James D" uniqKey="Blande J" first="James D" last="Blande">James D. Blande</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI</wicri:regionArea>
<wicri:noRegion>FI</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Calibration (MeSH)</term>
<term>Coleoptera (physiology)</term>
<term>Gas Chromatography-Mass Spectrometry (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Vascular Bundle (anatomy & histology)</term>
<term>Populus (metabolism)</term>
<term>Sesquiterpenes (analysis)</term>
<term>Signal Transduction (MeSH)</term>
<term>Volatile Organic Compounds (metabolism)</term>
<term>Volatilization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Calibrage (MeSH)</term>
<term>Chromatographie gazeuse-spectrométrie de masse (MeSH)</term>
<term>Coléoptères (physiologie)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Faisceau vasculaire des plantes (anatomie et histologie)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Herbivorie (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Sesquiterpènes (analyse)</term>
<term>Transduction du signal (MeSH)</term>
<term>Volatilisation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Sesquiterpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Sesquiterpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Faisceau vasculaire des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Vascular Bundle</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés organiques volatils</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coléoptères</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coleoptera</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Calibration</term>
<term>Gas Chromatography-Mass Spectrometry</term>
<term>Herbivory</term>
<term>Signal Transduction</term>
<term>Volatilization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Calibrage</term>
<term>Chromatographie gazeuse-spectrométrie de masse</term>
<term>Herbivorie</term>
<term>Transduction du signal</term>
<term>Volatilisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28280959</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.</ArticleTitle>
<Pagination>
<MedlinePgn>327-338</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-017-0826-z</ELocationID>
<Abstract>
<AbstractText>Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1462-5135</Identifier>
<AffiliationInfo>
<Affiliation>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI, Finland. tao.li@bio.ku.dk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen E, DK, Denmark. tao.li@bio.ku.dk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blande</LastName>
<ForeName>James D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, FI, Finland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012717">Sesquiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002138" MajorTopicYN="N">Calibration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="N">Coleoptera</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008401" MajorTopicYN="N">Gas Chromatography-Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058526" MajorTopicYN="N">Plant Vascular Bundle</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012717" MajorTopicYN="N">Sesquiterpenes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014835" MajorTopicYN="N">Volatilization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Defense induction</Keyword>
<Keyword MajorTopicYN="N">Phratora laticollis</Keyword>
<Keyword MajorTopicYN="N">Plant volatiles</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">Priming</Keyword>
<Keyword MajorTopicYN="N">Within-plant signaling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28280959</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-017-0826-z</ArticleId>
<ArticleId IdType="pii">10.1007/s10886-017-0826-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1892-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24738697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):16-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23383981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e24594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Dec;32(12 ):2585-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17089182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Jun;69(9):1838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18468649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Jan;17(1):44-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24165497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):16-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Jul;20(7):443-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25921921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Feb;138(2):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Feb;38(2):226-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22327276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Dec;40(11-12):1203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 16;10(4):e0123899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 May;21(5):1993-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Feb;35(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19159981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1781-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Feb 16;6:6273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25683900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2012;2:378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22532926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(3):722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2008 Feb;34(2):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18236110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Nov;61(5):545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Apr;87(4):922-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16676536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 5;318(5847):113-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Jul 15;221(4607):277-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17815197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):441-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21752032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1909-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Mar;128(3):1046-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22425020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):154-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
<li>Finlande</li>
</country>
</list>
<tree>
<country name="Finlande">
<noRegion>
<name sortKey="Li, Tao" sort="Li, Tao" uniqKey="Li T" first="Tao" last="Li">Tao Li</name>
</noRegion>
<name sortKey="Blande, James D" sort="Blande, James D" uniqKey="Blande J" first="James D" last="Blande">James D. Blande</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="Li, Tao" sort="Li, Tao" uniqKey="Li T" first="Tao" last="Li">Tao Li</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001128 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001128 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28280959
   |texte=   Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28280959" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020